Factoring Trinomials: $\chi^2 + b\chi + c$

In another chapter we learned to use the FOIL method to multiply two binomials. In many cases the simplified form of the product was a trinomial. In this section we will learn to factor trinomials by reversing the FOIL method. In particular, we will focus on factoring trinomials on one variable w leading coefficient 1.

Factoring Trinomials w Leading Coefficient 1 Using the FOIL method to multiply $(x + 5) \otimes (x + 3)$, we find the following.

We see that the leading coefficient (coefficient of x^2) is 1, the coefficient 8 is the sum of 5 & 3, & the constant term 15 is the product of 5 & 3. In general, this can be expressed as follows.

> $(x+a)(x+b) = x^{2} + bx + ax + ab$ = $x^{2} + (b+a)x + ab$

Now, given that a trinomial w leading coefficient 1, we want to find the binomial factors, if any. Reversing the relationship between a & b, as shown above, we can proceed as follows.

To factor a trinomial w leading coefficient I, find two factors of the constant term whose sum is the coefficient of the middle term. (If those factors do not exist, the trinomial is not factorable).

For	example, t	o factor	^ X ² +'	IX+30), we	need	positiv	e fa	ctors	s of	+3() wł	nose	sum	is -	· 11,	
	Po	sitive	l Fac	tors c	f 31	D	5	vn	m	of	Th	ısı	. FC	NCt	015	5	
) • 5	3D					\rightarrow		+ 2	D =	31					
		2.	15					\rightarrow	2	+)•	5-1	7					
		3.	10					\rightarrow	2	5+IC):13	•					
		5.	6					\rightarrow	ĸ	+10	- 11						

Bec	ause	۶·	: م ا	30	&	5+	6 = 1	1, W	e ho	ive													
								χ²	+),	X + '	3D -	(x -	5)	(X+	6								
Listi	ng a	ll po	airs i	s no	t ne	cess	ary.	Thi	s sto	ige	is ca	lled	the	trial	ran	d-er	ror	stag	e. Tl	nat i	s, ya)U CA	au
try	diffe	rent	pair	rs ur	ntil y	jou 1	find	the	corr	ect	pair.	If	a pa	ir w	the	req	uirea	d pr	oduc	et &	sum	doe	S
not	exist,	, the	e pol	yno	mial	is n	ot fa	actoi	rabli	e.													